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SUMMARY 

The three dimensional linear hydrodynamic equations which describe wind induced flow in a sea are 
solved using the Galerkin method. A basis set of eigenfunctions is used in the calculation. These 
eigenfunctions are determined numerically using an expansion of B-splines. 

Using the Galerkin method the problem of wind induced flow in a rectangular basin is examined in 
detail. A no-slip bottom boundary condition with a vertically varying eddy viscosity distribution is 
employed in the calculation. With a low (of order 1 cm2/s) value of viscosity at the sea bed there is high 
current shear in this region. Viscosities of the order of 1 cmZ/s near the sea bed together with high 
current shear in this region are physically realistic and have been observed in the sea. 

In order to accurately compute the eigenfunctions associated with large (of order 2000 cm2/s at the 
sea surface to 1 cm2/s at the sea bed) vertical variation of viscosity, an expansion of the order of 
thirty-five B-splines has to be used. The spline functions are distributed through the vertical so as to 
give the maximum resolution in the high shear region near the sea bed. 

Calculations show that in the case of a no-slip bottom boundary condition, with an associated region 
of high current shear near the sea bed, the Galerkin method with a basis set of the order of ten 
eigenfunctions (a Galerkin-eigenfunction method) yields an accurate solution of the hydrodynamic 
equations. However, solving the same problem using the Galerkin method with a basis set of B-splines, 
requires an expansion of the order of thirty-five spline functions in order to obtain the same accuracy. 

Comparisions of current profiles and time series of sea surface elevation computed using a model 
with a slip bottom boundary condition and a model with a no-slip boundary condition have been made. 
These comparisions show that consistent solutions are obtained from the two models when a physically 
relistic coefficient of bottom friction is used in the slip model, and a physically realistic bottom 
roughness length and thickness of the bottom boundary layer are employed in the no-slip model. 

KEY WORDS Vertical Eddy Viscosity Galerkin Method Hydrodynamic Model Eigenfunction Currents 
Roughness length 

1. INTRODUCTION 
The numerical solution of the three dimensional hydrodynamic equations which describe the 
motion of the sea, using either grid boxes or multiple layers in the vertical is now well 
established. With these methods the current is only evaluated at discrete points through the 
vertical in a grid box model, or a mean over each layer in a layered model. For problems in 
which a boundary layer of high current shear occurs, such as the region near the sea bed, it is 
necessary to increase the resolution in this area. 

Improved resolution within the boundary layer can be obtained by using a transformation, 
(such as a logarithmic compression near the sea bed') to increase accuracy in this region, 
although at the expense of reduced resolution elsewhere. Alternatively, improved resolution 
can be obtained by using a very fine grid spacing at the sea bed. However, increasing the grid 
resolution by this means involves a larger number of point values in the vertical, which have 
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to be integrated through time as the solution evolves. Naturally, as the grid resolution is 
refined, the associated computer time required to integrate the equations increases rapidly. 

An alternative to using grid boxes or layers in the vertical is to expand the horizontal 
components of current in terms of time and horizontally varying coefficients and functions 
through the vertical (the basis functions). The coefficients in the expansion can then be 
obtained using the Galerkin method.24 By this means a continuous current profile from sea 
surface to sea bed can be computed. 

In theory the choice of basis functions is arbitrary, however in practice their functional 
form is important? particularly in the high shear layer at the sea bed, which occurs when 
currents are computed using a no-slip bottom boundary condition. 

In this paper the Galerkin method is used to solve the three dimensional hydrodynamic 
equations which describe wind induced flow in a rectangular basin. Unlike previous applica- 
tion of the Galerkin method to this problem,24 the basis functions are not chosen in an 
arbitrary manner, but are the eigenfunctions of an eigenvalue problem involving the vertical 
eddy viscosity. By this means in a linear model a set of uncoupled partial differential 
equations is obtained. (The use of the Galerkin method with an arbitrary basis set yields a set 
of coupled equations). 

The choice of a basis set of eigenfunctions, is not new; it is the essential feature of the 
eigenfunction method used by The eigenfunctions used by Heaps however were 
determined analytically, and consequently the vertical variation of viscosity was restricted to 
a profile for which an analytical solution could be obtained. In the method developed in this 
paper the eigenfunctions are determined numerically, therefore the complex vertical varia- 
tions of viscosity which are found in 

The eigenfunctions used in this paper are calculated in terms of an expansion of B-splines. 
These functions are piecewise polynomials which are only non-zero over a small interval of 
space. This piecewise property can be used to advantage in the numerical calculation of the 
eigenfunctions, since it enables the number of B-splines in regions where a high vertical 
resolution is required to be increased. 

Since the solution of the eigenvalue problem requires very little computer time, the 
calculation can be repeated using various vertical distributions of B-splines. By this means it 
is possible to check that the expansion of B-splines has converged and that the eigenfunc- 
tions have been accurately determined. 

The eigenfunction method developed in this paper is used to compute wind induced 
currents within a closed rectangular flat bottomed basin. The dimensions of the basin 
approximate those of the North Sea. 

Calculations show that current profiles converge rapidly as the number of eigenfunctions in 
the basis set increases. 

Current profiles and time variations of sea surface elevation, computed using no-slip and 
slip bottom boundary conditions are compared in Section 4 of this paper. These compari- 
sions show that provided physically realistic values of bottom friction (in the slip model) and 
thickness of the bottom boundary layer and roughness length (in the no-slip model) are used, 
then the two types of model are physically consistent. 

can be included in the model. 

2. FORMULATION OF THE HYDRODYNAMIC EQUATIONS 

(a) Basic equations 
The equations of continuity and motion for a homogeneous sea, neglecting non-linear 

terms, and the direct influence of the tide-generating forces, and using for consistency the 
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same Cartesian Co-ordinate system as that employed by HeapssY6 and D a v i e ~ ~ , ~  may be 
written as: 

where in these equations: 

x, y, z a left handed set of Cartesian co-ordinates, with z the depth below the 
undisturbed surface and x, y co-ordinates in the horizontal plane 

h the undisturbed depth of water 
f elevation above the undisturbed depth 

u, v, the x and y components of current at depth z 
y geostrophic coefficient 
g acceleration due to gravity 

N coefficient of vertical eddy viscosity 

t denotes time 

In these equations y and g are constants. The variables u, v and N vary with x, y, z and t. 
Depth h is a function in general of x and y ;  and f varies with x, y and t. 

In order to solve equations (1)-(3) for 5, u, v, boundary conditions have to be specified at 
the sea surface and at the sea bed. 

The surface conditions, evaluated at z = 0, are: 

where F,, G, denote the components of wind stress acting on the water surface in the x and y 
directions; p ,  the density of sea water, is assumed constant. Suffix 0 denotes evaluation at 
z =o. 

Similarly at the sea bed 

where FB, GB denote the components of bottom friction in the x and y directions. 
Assuming a linear slip condition at the sea bed: 

FB = k p U h ,  GB = k P V h  (6) 
with k the coefficient of linear bottom friction. 

A quadratic law at the sea bed may be applied rather than the linear law. In this case 

FB = k ; p u h ( u z + v ~ ) 1 ’ 2 ,  GB = K p V h ( U ~ + V ~ ) ” 2  (7) 

with K the coefficient of non-linear bottom friction. 

condition, namely: 
An alternative bottom boundary condition, to those given by (6) and (7) is a no-slip 

u h  = v h  = 0 (8) 
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(b) Application of Galerkin method, with an arbitrary set of basis functions 

We now consider the solution of equations (1)-(3) using the Galerkin method. 
Expanding the two components of velocity in terms of rn depth-dependent functions fr(s) 

(the basis functions) and coefficients Ar(x, y, t) and Br(x, y, t) varying with horizontal position 

where 
s = z /h  

This relation transforms the interval 0 G z 6 h (which varies in general with horizontal 
position x, y due to variations in the sea bed depth h)  into the constant interval O S s S  1. 

Substituting (9) and (10) into equation (l), transformation using (1 l ) ,  gives 
m 

%+ at  r = l  c [; {Arhjos fr ds)+: {BihI,' fr ds}] =0 

Considering the u-equation of motion (equation (2)). Applying the Galerkin method, we 
multiply equation (2) by fk, transform from the region z to the region s, using equation (11) 
and integrate with respect to s over the region 0 to 1. (For details see References 3-4.) 
Dividing the resulting equation through by h, gives, 

Integrating the last term in (13) by parts, gives 

Eliminating the terms in (14) using transformation (11) and boundary 
as 

condition (4) and (5 )  gives 

Substituting expansions (9) and (30) into (15), gives 
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In order to use equation (16) to advance the coefficients A, through time, it is necessary to 
compute the integrals involving N. For the general case in which N varies with x, y, z and t, 
the problem of recomputing these integrals through time and space, can be avoided by 
expanding the viscosity in terms of coefficients Ej(x, y, t )  and vertically varying functions 

thus 

where rn' is not necessarily equal to m. 
The formulation and solution of the equations of motion using the Galerkin method with 

eddy viscosity given by (17) has been given in detail for the non-linear equations by Davies3 
and for the linear equations by Davies and Owen4 and Davies.* 

Although equation (17) allows for a completely general form of eddy viscosity; in practical 
computations the vertical variation of N is usually fixed although its magnitude varies with 
horizontal position and time, see for example References 10 and 11. For the case in which 
the vertical variation of N is fixed, we have, 

N(x,  Y, s, t )  = 4 x ,  Y, t)+(s> (18) 
where (b is a fixed function, representing the vertical variation of N. 

Substituting equation (18) into (16), gives 

In general the basis functions f, can be chosen in an arbitrary manner. Davies' used a basis 
set of piecewise functions (B-splines), whereas Davies and Owen4 used continuous functions. 

(c) Application of the Galerkin method with a basis set of eigenfunctions 

(i) Formulation and solution of the eigenvalue problem. With arbitrary basis functions the 
rn simultaneous equations given by (19) are coupled together. However for the case in which 
the vertical variation of N does not vary with horizontal position or time, (equation (18)) it is 
possible to uncouple these equations by choosing the basis functions fr to be eigenfunctions, 
with corresponding eigenvalues i, of an eigenvalue problem involving the vertical eddy 
viscosity, of the form ; [ N ~ ]  = -Ef 

Substituting (18) into (20) gives 

Since a! is a function of x, y, t it only affects the magnitude of the eigenvalues, and the 
eigenfunctions are determined from 

ds 

where 6 in (21) can be determined from the eigenvalues E computed from (22) using Z = (YE. 
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For a general function 4 it is necessary to determine the set of eigenfunctions and 
eigenvalues associated with equation (22) numerically. (Analytical properties of eigenfunc- 
tions and details of numerical methods to solve eigenfunction problems are given by 
Wilkinson.I2) In order to ensure consistency with the numerical approach used to solve the 
hydrodynamic equations, the Galerkin method is used to calculate the eigenfunctions of (22). 

Thus, expanding the rth eigenfunction f, in terms of a set of f i  coefficients d,, and basis 
functions M,, gives 

- 
m 

f r  = I: drrMr(s) (23) 
r = l  

Applying the Galerkin method to (22), the rth eigenfunction equation is multiplied by fk 

and integrated over the region 0 to 1, giving 

For an arbitrary 4 the eigenvalues and eigenfunctions given by (24) may be complex. 
However, if (24) is integrated by parts, we obtain, 

It can be readily shown that the eigenvalues and eigenvectors determined by the solution 
of (25) will be real, provided, 

Using (26), equation (25) simplifies to 

For convenience the eigenfunctions are normalized by requiring that fr(0) = 1 for all r. 
Condition (26a, b) means that in the general case in which the eddy viscosity is non-zero at 

the sea surface and sea bed, dfr(0)/ds or f,(O) must be zero. The corresponding condition at 
the sea bed is that dfr(l)/ds or fr(l) is zero for all r. 

In practice we do not want fr(0) = 0 (for all r) since this forces the u and ZI components of 
surface current, evaluated from expansions (9) and (10) to be zero, a condition which is not 
physically realistic in the problems considered later in this paper. However if fr(0) f 0 then 
eigenfunctions computed from (27) will have df,(O)/ds = 0 because of condition (26a). Such a 
condition is physically acceptable since external surface stresses are included explicitly in the 
equations of motion (see equation (19)) by using the Galerkin method. The condition 
df,(O)/ds = 0 is in fact a necessary surface boundary condition for tidal flow. However in the 
next section it will be shown that setting dfJds(0) = 0 does affect the convergence of 
expansions (9) and (10) for problems involving wind induced motion. 

With a no-slip condition at the sea bed, fr(l) = 0 is an essential boundary condition and is 
the physically correct condition to use at the sea bed. However for the case of a slip bottom 
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condition f,(l) # 0 and consequently eigenfunctions computed from (27) will have df,(l)/ds = 
0, for all r, because of condition (26b). 

Substituting expansion (23) into (27) and writing (27) in matrix form gives 

dTDd = EdTCd (28) 
where d is the matrix of coefficients 

dl1 dl2 * * -  4,' 
& .  . . . . . :  

&%. 

and d"' is its transpose. E is the diagonal matrix of eigenvalues 

D is the matrix of integrals 

/I. 
and C is the matrix of integrals 

where Mf = dMi/ds 
Equation (28) is in the standard form of an eigenvalue problem which can be solved using 

any one of the numerous numerical methods which exists in the literature. In practice the 
eigenvalue problem was solved using Householder reduction and the QL a1g0rithm.l~ 

(ii) Formulation using eigenfunctions. For the case in which the basis functions fr are 
eigenfunction determined by (27), equation (19) can be further simplified, by taking 
advantage of the fact that the eigenfunctions are orthogonal, 

and can be normalized such that 

f r (0)=l ,  r = 1 , 2  , . . . ,  rn (30) 
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Hence using (29), (27) and condition (30), equation (19) reduces to 

at; ' 1 

aAk lo f k f k  ds = f k f k  ds - gG f k  ds at 

In practice it is convenient to write expansions (9) and (10) in the form 
m m 

r = l  ,= l  

r = 1  r = l  
where 

(33) 

(34) 

and y, v, are coefficients varying with horizontal position and time. Using (32) and (33), 
equation (31) reduces to 

where 
1 

a k  = fk ds 

Similarly for the v-equation of motion, equation (3), we obtain 

From equation (12) we obtain the continuity equation, 

Once the coefficients d,, in expansion (23), and the eigenvalues E, have been computed 
from (28), the integrals 4, and a, required in equations (35), (36) and (37) can be readily 
evaluated. 

Equations ( 3 3 ,  (36) and (37) are the working equations used to integrate the coefficients 
u,, v, and free surface elevation 5 forward with time. 

In order to integrate these equations it is necessary to discretize in the horizontal space 
domain, and through time. In the numerical calculations presented in the next section of this 
paper, a staggered finite difference grid was used in the horizontal (see Figure 1). Details of 
this grid, and methods used to discretize in the horizontal, equations analogous to ( 3 9 ,  (36) 
and (37) have been given p r e v i o ~ s l y . ~ , ~  

Using equations ( 3 3 ,  (36) and (37) starting from an initial state of rest in which t;, {y}, {u,} 
are zero, the solution for the free surface elevation t;, and the coefficients u, and v, may be 
advanced through time. Currents at any depth and time can then be computed from the 
coefficients u,, v, using expansions (32) and (33). 
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(d) Form of the basis functions used to compute the eigenfunctions 

Considering now the basis function MI, employed to calculate the eigenfunctions f,. In 
theory the choice of functions MI, is arbitrary, however for the problems considered later 
(see Section 3) it is advantageous to use piecewise functions, so that increased resolution in 
the boundary layers, near the sea surface and sea bed can be obtained. Davies14 has shown 
that accurate solutions of partial differential equations can be obtained with a basis set of 
fourth order B-splines, and for this reason these functions are employed here to calculate the 
eigenfunctions f,. 

B-splines are piecewise polynomials, which are non-zero only over a finite interval of 
space (Figure 2). Points along the s axis, at which the B-spline changes from a zero to a 
non-zero function are termed knots, denoted by A,. A fourth order B-spline MI is non-zero 
only over the interval h, -4<ssCh , ,  and at the points Ah,-4 and h,,M, and its derivatives 
vanish. 

Figure 2 shows the interval from sea surface to sea bed, 0 < s S 1, divided into ten interior 
knot segments. The number of B-splines in this interval can be readily increased by 
increasing the number of knots. The position of the knots and their separation is arbitrary, 
hence resolution in any area can be increased by increasing the number of knots and 
decreasing their separation in the region where higher resolution is required. 
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Figure 2. Distribution of B-splines and associated knots with depth 

The numerical methods used to generate the B-splines, and to evaluate the integrals which 
arise in equation (28) have been described in detail by Davies14 and will not be repeated 
here. 

For the case of stress surface and bottom conditions, natural boundary conditions, it is not 
necessary for each of the basis functions f, to satisfy these boundary conditions exactly and 
consequently expansion (23) can be used directly in the eigenvalue problem given by 
equation (27). 

However for the case in which a no slip bottom boundary condition is employed (an 
essential boundary condition) it is necessary for each basis function fr to satisfy this boundary 
condition exactly. Consequently, 

f r ( l ) = O  for all r (38) 
In order to satisfy this condition, it is necessary for 

- 
m 

fr (1) = C di,rM (1) = 0 (39) 
1=1 

Owing to the piecewise nature of the B-splines, for the case of fourth order B-splines, (39) 
reduces to 

d,-2,r We-2 + dfi-l.r W,-I+ A,, W, = 0 (40) 
where 

w, = Ml(1) 
Incorporating condition (39) into expansion (23) gives 

where 

Thus, expansion (41) satisfies the no-slip boundary condition (fr(l) - = 0, r = 1,2 ,  . . . , rii) for 
all coefficients &, by introducing modified B-splines I&-2 and into the expansions. 
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3. NUMERICAL CALCULATIONS 

(a) Calculation of eigenfunctions using an expansion of B-splines 

Before considering the solution of the hydrodynamic equations using expansions of 
eigenfunctions, it is instructive to examine the rate of convergence of expansion (23) for a 
few idealized vertical variations of N, for which analytical solutions are available. 

Case (i). N = constant, fi(0) = 0, f:(l) = 0, and normalizing condition fr(0) = 1. In this 
particular case 4 = 1 and a ( x ,  y, t) = N. Solution of eigenvalue problem (22) is 

(42) 2 f* = cos a,s; E, = a!, 

where 

a!,=rrr r=O,1,2 ,..., 00 

The eigenfunctions f, are the well known cosine functions and are independent of N. 
The first five eigenvalues E, computed using an increasing number of uniformly spaced 

interior knots a, are given in Table I, together with values computed analytically. (The 
number of splines rii used in expansion (23) is given by rii = a4 n - 1, where n is the order 
of the B-spline, which in these calculations was four). It is evident from this table that the 
eigenvalues computed using expansions of B -splines rapidly converge to those determined 
analytically. From Table I, it is apparent that with an expansion of B-splines, using ten 
interior knots, (a= lo), the first three eigenvalues can be computed to an accuracy of 
0.0001, although in order to obtain this degree of accuracy for e5 it is necessary to increase 
the number of interior knots to twenty (i.e. a = 20). 

Table I. Eigenvalues computed using an increasing number of internal knot 
intervals M, for the case of a slip bottom boundary condition. 

Number of internal knots &k 
Eigenvalues 10 15 20 Analytical solution 

E l  0~0000 0~0000 0~0000 0~0000 
E z  9.8696 9.8696 9.8696 9.8696 
E 3  39.4785 39.4785 39.4784 39.4784 
E4 88.8292 88.8262 88.8263 88.8264 
E 5  159.9477 157.9153 157.9138 157.9137 

Case (ii). N = constant, f:(O) = 0, f,(l) = 0 and normalizing condition fr(0) = 1. This case 
corresponds to a no-slip bottom boundary condition, i.e. an essential boundary condition, for 
which f,(l) = 0 for all r. The solution of the eigenvalue problem (22) is again 

(43) 2 
fr = cos a!,& E, = a,,  

but in this case 

rr 
a,=?---, r = 1 , 3 , 5  ,..., 00 

2 

Comparison of analytical and numerical values of eigenvalues showed as in the previous 
case, that for a given a, the error in the computed eigenvalue increases as r increases. 
However, the error can be reduced if a is increased. 
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(b) Calculation of wind induced motion in a rectangular basin 

In order to compare the accuracy of current profiles computed using expansions of 
eigenfunctions, with current profiles computed p rev iou~ ly ,~ ,~  wind induced motion in a 
simple rectangular sea was examined. 

The closed rectangular basin (see Figure 1) has dimensions and rotation representative of 
the North Sea. Motion in the basin was started from a state of rest by the sudden imposition 
of a uniform northerly wind stress of -15 dyn/cm2 (i.e. Fs = 0, G, = -15 dyn/cm2). Other 
parameters used in the calculation are: Ax = 400/9 km, Ay = 800/17 km, h = 65 m, y = 
0-44 h-.', p = 1.025 gm/cm3, g = 981 cm2/S. These parameters are identical to those used by 
Davies and Owen4 in a series of calculations in which wind induced motion in the basin was 
calculated using a basis set of Chebyshev and Legendre polynomials, and by Davies2 with a 
basis set of cosine functions. By repeating these previous calculations, rigorous comparisons 
between the convergence of expansions of eigenfunctions and rates of convergence found 
with other basis functions can be made. 

In an initial series of computations (calculation (a)), a slip bottom boundary condition was 
used, with k = 0.2 cmls, and N constant at 650 cm2/s (0.0650 m2/s). 

Calculation (a ) :  Slip boundary condition N = 650 cm2/s, k = 0.2 cm/s. It is evident from 
Table I that the eigenvalues corresponding to the first few eigenfunctions can be accurately 
computed with &i = 20. 

In order to examine the convergence of expansions of these eigenfunctions, surface and 
bottom u and 2, components of current, at the centre of the basin (point A, in Figure l ) ,  
thirty hours after the onset of the wind field are given in Table 11. For comparision purposes, 
currents evaluated using expansions of 10 cosine functions2 and 20 cosine functions are given 
together with values computed using 10 Chebyshev and 10 Legendre polynomials. 

It is obvious from Table 11, that there are no significant differences between currents 
computed using an expansion of eigenfunctions with rn = 10 and rn = 20, and those com- 
puted using ten and twenty cosines.2 In this particular example the cosine functions are the 
exact eigenfunctions of the problem, and although from Table I, it is obvious that the 
numerically determined eigenfunctions and eigenvalues are not identical to the cosine 
function, the inaccuracies in the computed eigenfunctions and eigenvalues do not affect the 
computed currents. 

It is apparent from Table 11, that the expansion converges as m, the number of eigenfunc- 
tions increases. However in the case of the v component of current at the sea surface this 
convergence is slow. There is an appreciable difference between the surface u component of 
current computed using eigenfunctions and that computed using either Chebyshev or 
Legendre  polynomial^.^ This component of current is in the direction of the surface wind 
stress. 

Table 11. u and v components of current computed with a slip bottom boundary condition, 30 hours 
after the onset of the wind field, evaluated using an increasing number of eigenfunctions (m). 

Component of Number of eigenfunctions m 10 20 10 10 
Depth current (emis) 5 10 15 20 Cosines Cosines Chebyshev Legendre 

Surface U -14.90 -14.92 -15.00 -15.01 -14.92 -15.00 -15.06 -15.12 
V -27.09 -30.11 -31.21 -31.69 -30.11 -31-68 -33.20 -33.20 

Sea bed U 7.40 7.11 7.08 7.04 7.11 7.04 6.96 7.07 
V 12.20 12.47 12.22 12.23 12.47 12-24 12.07 11.75 
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Table 111. u and v components of current, computed with a slip bottom boundary 
condition, 30 hours after the onset of the wind field, evaluated using a basis set of 

B-splines. 
~~~ 

Component of Number of internal knots a 
Depth current (cmls) 2 4 6 8 10 

Surface U -14.91 -15.06 -15.06 -15.06 -15.06 
U -33.31 -33.15 -33.15 -33.15 -33.15 

Sea bed U 7.05 6.95 6.95 6.95 6.95 
V 12.00 12.08 12.08 12-08 12.08 

The poor convergence of the expansion for the v component of current at the sea surface, 
has been shown to arise’ because the derivative of the cosine functions and also the 
numerically derived eigenfunctions, at the sea surface are zero. Consequently the surface 
stress computed with a finite number of cosine functions or numerically derived eigenfunc- 
tions will always be zero. Hence the expansions cannot convergence with a finite number of 
terms to the externally applied wind stress. 

In the case of the u-component of current, the wind stress at the surface is zero. A surface 
condition which is automatically satisfies by the functions. In this case the expansions 
converge rapidly for all depths. 

An alternative to using an expansion of B-splines to compute eigenfunctions, and then 
using these eigenfunctions as a basis set for the solution of the hydrodynamic equations is to 
use the B-splines directly as basis functions. This approach has been used previously’ to 
solve the hydrodynamic equations. However, Davies’ did not include the surface stress 
condition as a natural boundary condition, but satisfied it exactly by linearly combining the 
spline functions. It is therefore particularly interesting to compute currents using an expan- 
sion of B-splines, in which the surface stress condition is included as a natural boundary 
condition. Currents computed by this method can then be compared with currents deter- 
mined using eigenfunction expansions, and rates of convergence examined. In both cases 
surface and bottom boundary conditions are treated as natural boundary conditions. 

Currents at sea surface and sea bed, computed using B-splines, with an increasing number 
of interior knots fi, are given in Table 111. Referring to this Table, it is evident that the 
B-spline expansion rapidly converges. Surface and bottom currents computed with &I = 4 
agreeing to within 0.05 cm/s with those computed using an expansion of ten Chebyshev 
polynomials. Obviously in this particular example, the eigenfunctions, computed from 
equation (22) are not the optimum functions (in the sense that an expansion of them 
converges more rapidly than expansion of any other function), to use as a basis set. 

Calculation (b): No slip boundary condition, N varying in a linear manner through the 
vertical. In the previous example a slip bottom boundary condition was used, with a constant 
value of eddy viscosity. We now consider the case in which a no slip bottom boundary 
condition is employed, with a vertically varying eddy viscosity (Distribution A in Figure 3). 
Referring to this Figure, the total depth of the water was 65 m, with d l  and d3  fixed at 11 m, 
approximating a surface and a bottom boundary layer, within which N varied linearly. In 
order to compare currents computed using a basis set of eigenfunctions with those computed 
using Chebyshev or Legendre polynomials4 or cosine functions,’ identical values of 
N,, N,, Nh, to those used previously, were employed, namely N, = 130 cm’/s, (0.0130 m2/s) 
N, = 650 cm2/s, (0.0650 cm’/s), Nh = 130 cm2/s (0.0130 m2/s). 
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Surface 

Sea Bed 

(A) (B) (C 1 (0)  

Figure 3. Schematic diagram showing the various depth distributions (A), (B), (C) and (D) of eddy 
viscosity used in the calculations 

In this particular example, N did not vary with horizontal position or time, consequently 
a ( x ,  y, t )  = 1.0 in equations (31) and (36). The functional form of 4 used in equation (22) is 
given schematically by Distribution A in Figure 3, with values of N,, N,, Nh as stated. The 
values of ei together with the corresponding fi used in equations (31) and (36) are 
determined by the solution of (22). 

Currents at sea surface and mid-depth, computed using a basis set of eigenfunctions, 
derived from this eddy viscosity distribution, are given in Table IV. The eigenfunctions were 
determined using an expansion of B-splines, with twenty five uniformly spaced interior knots 
(i.e. &f=25). 

It is apparent from this Table that the eigenfunction expansion converges rapidly at all 
depths, except for the surface v-component of current. For comparison purposes, currents 
computed using a basis set of cosine functions, given by equation (43), taken from Reference 
2 are also given. Comparing currents computed using these two different basis sets, it is 
evident that there is a significant improvement in convergence using eigenfunctions rather 
than cosine functions, particularly for the V-component of surface current. 

In order to understand why the expansion of eigenfunctions converges faster at the sea 
surface, than an expansion of cosine functions, it is necessary to examine the vertical 
variation of these functions. The first five eigenfunctions are plotted as a function of the 
vertical co-ordinate in Figure 4(a). From this Figure it is apparent that the oscillatory nature 
of the eigenfunctions increases as r increases. This is a necessary requirement for orthogonal 
functions. Each eigenfunction has a steep gradient near the sea surface, which increases with 
r. This steep gradient enables them to accurately model the high shear surface layer which 
occurs when a wind stress is applied at the water’s surface. The existence of this region of 
rapid change in the higher eigenfunctions, and the absence of such a region in the cosine 

Table IV. u and v components of current, computed with a no-slip bottom boundary condition, 15 
hours after the onset of the wind field, evaluated using basis sets of eigenfunctions and cosines 

Component Depth Number of eigenfunctions Number of cosine functions 
cmls S 5 10 15 20 25 5 10 15 20 25 

U 0.0 -11.98 -12.22 -32.13 -12.14 -12.14 -9.0 -11.4 -11.8 -12.0 -12.1 
0.5 3.42 3.46 3.46 3.46 3.46 3.4 3.6 3.5 3.5 3.5 

u 0.0 -27.04 -34.25 -36.66 -37.59 -37.95 -36.0 -26.6 -30.7 -33.5 -35.0 
0.5 19.54 20.69 20.88 20.76 20.72 19.3 20.7 20.7 20.7 20.7 



HYDRODYNAMIC SEA MODEL 47 

- I  
Surface 

Sea Bed 
r = l  r=2 r=3 r = 4  r=5 

Figure 4(a). Vertical variation of the first five eigenfunctions computed numerically with knot 
distribution F (Table VI) and eddy viscosity profile A (Figure 3), with N,  = 130 cm2/s, N,,, = 

650 cm’ls, Nh = 130 cm2/s 

functions, explains the improved rate of convergence of the eigenfunctions compared with 
the cosine functions. A close inspection of Figure 4(a) does however reveal that, just at the 
sea surface, the shear layer decreases, and the vertical derivative of the eigenfunction tends 
to zero. This abrupt change in the derivative of the eigenfunction at the sea surface, arises 
because condition (26a) requires that the derivative of the eigenfunction is zero at the sea 
surface for the case in which N and f,.(O) are non-zero at the sea surface. The use of a zero 
stress surface condition obviously affects the convergence of the eigenfunctions at the sea 
surface. This poor convergence is confirmed by comparing currents given in Table IV with 
currents computed using an increasing number of B-splines (Table V) as basis functions. 

From this comparison it is evident that apart from the surface z1 component of current, no 
significant differences (i.e. differences greater than 0-1 cm/s) occur between currents com- 
puted using ten eigenfunctions, and those computed using B-splines with a = 8. 

Table V. u and v components of current, computed with a no-slip bottom 
boundary condition, 15 hours after onset of the wind field, evaluated with a 

basis set of B-splines 

cm/s S 2 4 6 8 10 
Component Depth Number of internal knots 

U 0.0 -12.25 -12.38 -12.25 -12.17 -12.15 
0.5 3.51 3.53 3.50 3.47 3.48 

V 0.0 -38.27 -40.76 -41.47 -41.56 -41.61 
0.5 17-58 20.74 20-55 20.70 20.72 

Calculation (c): No slip bottom boundary, physically realistic vertical variation of N. An 
appropriate value of eddy viscosity to use in a wind driven problem is at present difficult to 
determine from the scientific literature. Munk and Andersonls have suggested that the value 
of eddy viscosity at the sea surface should depend upon the wind speed and decrease with 
depth below the surface. For the wind stress used here a surface value of N, = 2600 cm2/s 
(0.2600 m2/s) would appear appropriate.” Turbulence below this surface layer is probably 
dominated by the tidal currents. For tidally induced turbulence Davies and Furnes” have 
proposed that, away from the bottom boundary layer 

N =  2 

where c = s-’, a typical frequency associated 
2.0 X lo-’, a dimensionless coefficient. 

K ( i i 2 + i P )  

ir 
(44) 

with long wave motion, and K = 
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In (44), ii and V denote depth mean tidal currents, given by 

r = l  r = l  

where 

In physically realistic models”,’“ N varied with x, y, t according to (44). Such a variation 
can be included in the present formulation by making a! in equations (31) and (36) 
proportional to ( i i ’ f i j ’ ) .  However, since the present model represents the North Sea by a 
closed basin it is not possible to include the tide directly in the model. The effect of a 
mean tidal current upon the value of Nm used in the model can be taken into account using 
(44) with average values for the amplitudes of the tidal currents. This is consistent with the 
idealized model used here and yields a fully linear model. 

Typically over the North Sea, depth mean tidal currents are on average of the order of 
50 cm/s to 60 cmls. Using these values in equation (44) gives Nm varying from 500 cm2/s to 
720cm2/s. In order to make comparisons with previous calculations a value of N, = 
650 cm’ls was in fact used. 

Values of eddy viscosity in the bottom boundary layer are difficult to determine. Heaps 
and Jones” in a numerical calculation of the Mz tide in the Irish Sea, assumed that N at 
z = h was given by 

Nh=Zok&(iiZ+ij2)1’2 (45) 

where Z, is the roughness length, k, Von Karman’s constant, taken as 0.41, and K 
the coefficient of bottom friction as defined previously. 

From observations, Channon and Hamilton” found a range of values of Z,, typically from 
7.0 cm to 0-44 cm. Using equation (45) with these values of Z ,  and a typical tidal current of 
amplitude 60 cm/s, with K = 0-005 (Reference ll), gives values of N at the sea bed ranging 
from 12.2 cm’ls to 0.8 cm2/s. 

In order to examine the sensitivity of current profiles to changes in Z, a series of 
calculations were performed in which the eddy viscosity at the sea bed took a series of 
values ranging from 10 cm2/s to 1 cm2/s (i.e. approximately covering the observed range). A 
calculation with Nh = 130 cm’/s was also performed for comparison with earlier calculations. 
As in the previous calculation, wind induced motion in the rectangular basin was computed, 
with a no slip bottom boundary condition. However, a smooth continuous physically realistic 
vertical variation of viscosity was used in these calculations (Distribution B in Figure 3) ,  with 
N,, Nm, Nh denoting respectively surface, mid-depth and bottom viscosity. As previously the 
total depth h was 65 m, with dl and d, fixed at 11 m, approximating a surface and bottom 
layer. 

In these calculations N, was fixed at 2600 cm’ls, N, at 650 cm’/s and Nh took a range of 
values, namely Nh = 130, 10, 5 ,  1 cm’ls. Since N in these calculations did not vary with 
horizontal position or time a! = 1.0 in equations (31) and (36) and the eigenvalues E, and 
eigenfunctions fr were calculated from (22), with as shown in distribution B (Figure 3)  with 
appropriate values of N,, N,, Nh in m’ls. 

Calculation c ( i ) :  N, = 2600 cm2/s, Nm = 650 cm’ls, Nh = 130 cm2/s. In order to determine 
the convergence of the expansion of B-splines, eigenfunctions for this eddy viscosity 
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Table VI. Various knot distributions used in the numerical calculations 

Knot 
distribution 

Knot spacing from sea surface S = 0.0 to 
sea bed S = 2.0 

A(M = 25) 
B(M=28) 
C(6f = 36) 
D(G= 32) 

E(M = 34) 

0.0 (0.04) 1.0 
0.0 (0.1) 0-5 (0.05) 0.8 (0.02) 0.92 (0.01) 0.97 (0.005) 1.0 
0.0 (0.04) 0.84 (0.02) 0.92 (0.01) 0.97 (0.005) 1.0 
0.0 (0.1) 0.5 (0.05) 0.8 (0.02) 0.92 (0.01) 0.97 (0.005) 
0.98 (0.0025) 1.0 
0.0 (0-1) 0.7 (0.05) 0-8 (0.04) 0.84 (0.02) 0.94 (0.01) 
0.97 (0.005) 0.985 (0.001) 0.987 (0.0005) 0.990 (0.0025) 
0-995 (0.001) 1-0 
0.0 (0.1) 0.7 (0.005) 0.8 (0.02) 0.94 (0.01) 0.95 (0.005) 
0.97 (0.002) 1.00 
0.0 (0.1) 0.7 (0.05) 0.8 (0-04) 0.86 (0.02) 0.96 (0.01) 
0.97 (0.005) 0.990 (0.0025) 0.995 (0.001) 0.997 (0.0005) 
1 .00 

F (a=37)  

G ( M  = 37) 

distribution were computed with knot distribution A (a = 25) and knot distribution B (a = 28) (see Table VI for the vertical position of knots). From Table VI, it is apparent that 
distribution (A) is a uniform knot spacing through the vertical, whereas in distribution (B), 
the knot spacing decreases rapidly near the sea bed. 

The convergence of the computed current profiles calculated with both these knot 
distributions was examined by increasing the number of eigenfunctions used in expansions 
(9) and (10). Thus m took a range of values, namely m = 5,10,15. 

In Table VII, u and zi components of current are given at various normalized depths s, 
computed using a basis set of eigenfunctions derived with knot distributions (A) and (B) for 
various values of m. 

It is evident from this Table that for both distributions A (R = 25) and B (a = 28) the 
expansions of eigenfunctions converge rapidly. Although there are some slight differences 

Table VII. u and u components of current evaluated with N, = 0.2600 m2/s, N,, = 
046.50 m2/s, Nh = 0.0130 m2/s, using an increasing number of eigenfunctions, which 

have been computed with knot distributions A and B. 

Eigenfunctions computed Eigenfunctions computed 
with knot distribution A with knot distribution B 

Number of eigenfunctions Number of eigenfunctions 
S 5 10 15 5 10 15 

u(cm/s) 0.0 -7.19 -7.20 -7.21 -7.15 -7-16 -7.17 
0.5 2.60 2.62 2.62 2-59 2-61 2.61 
0.75 4.84 4-84 4.84 4.83 4.83 4.83 
0.95 2.19 2.14 2.14 2.19 2.13 2.14 
0-98 1.09 1.04 1.02 1 -08 1.03 1.01 

u (cm/s) 0.0 -7-76 -9.13 -9.65 -7.67 -9.05 -9.86 
0.5 18.83 18.86 18.85 18.82 18.97 19.02 
0.75 20.25 19-75 19.76 20.25 39.74 19.80 
0.95 9.19 9.85 9.85 9.19 9.82 9.80 
0.98 4.58 5.16 4.99 4.56 5.09 5-04 

b icm) 125.3 125.3 125.3 125.3 125.3 125.3 
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Figure 4(b). Vertical variation of the first five eigenfunctions computed numerically with knot distribution F 
(Table VI) and eddy viscosity profile B, with N, = 2600 cm2/s, N,,, = 650 cm2/s and Nh = 10 cm*/s 

between current profiles computed with eigenfunctions determined with = 25 and = 28, 
these are not significant. However, when this calculation was repeated but with N h  reduced 
to 10 cm2/s, differences in current magnitude, particularly near the sea bed, and in the free 
surface elevation were evident between the cases computed with an increasing number of 
eigenfunctions determined numerically using knot distributions (A) (a = 25) and (B) (a= 28). 

It is apparent from Table VII that the expansion of eigenfunctions converge rapidly, and 
that current profiles, except for the 2) component of surface current can be computed to an 
accuracy of 0*05cm/s using an expansion of ten eigenfunctions (m = 10). However the 
accuracy of the computed current profile is also determined by the number of B-splines used 
to compute the eigenfunctions, particularly for the case with N h  = 10 cm2/s. 

The importance of using a sufficiently large number of B-splines near the sea bed can be 
appreciated by examining the vertical variation of the eigenfunctions. The first five eigen- 
functions, evaluated numerically with A?= 28, are plotted in Figure 4(b). From this figure it 
is evident that with N h  = 10 cm2/s the higher eigenfunctions are characterized by a steep 
vertical gradient near the sea bed. In order to resolve this gradient it is necessary to ensure 
that the model has sufficient resolution close to the sea bed. This point will be discussed at 
length later in this paper. 

To examine in more detail the effect upon current profiles of changing the number and 
distribution of knots and associated B-splines used to compute the basis set of eigenfunctions 
a series of calculations has been performed. In these calculations the number of eigenfunc- 
tions m, used to solve the hydrodynamic equations was fixed at ten. However, the number of 
B-splines used to compute these eigenfunctions and their associated knot distributions were 
varied (see Table VI). 

Calculation c(ii): N, = 2600, N,,, = 650, N h  = 5 cm2/s. Current components at point A for 
various depths s, computed with ten eigenfunctions, determined using various internal knot 
distributions (given in Table VI) are shown in Table VIII. Also given in the Table is the free 
surface elevation, at point B, and the first five eigenvalues E,. 

Referring to Tables VI and VIII, it is evident that the eigenvalues, currents and free 
surface elevation converge rapidly as the vertical resolution near the sea bed is increased. 
Comparing current profiles, eigenvalues and free surface elevation computed with distribu- 
tion A (a = 25) and distribution B (fi = 28) it is evident that re-distributing the knots through 
the vertical to increase the resolution near the sea bed enhances the convergence of the 
solution. A further increase in knots, away from the sea bed (distributions B and C) does not 
appear to significantly affect the solution, nor in this case does increasing the convergence 
near the sea bed (compare currents computed with distribution (B) with currents computed 
with distributions D, E, F and G). 
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Table VIII. u and v components of current, free surface elevation 6 and eigenvalues E ,  evaluated with 
N, = 0.2600 m2/s, N,,, = 0.0650 m2/s, N,, = 0.0005 m2/s using ten eigenfunctions computed using vari- 

ous knot distributions. For comparision currents computed using a basis set of B-splines are given. 

Basis set of eigenfunctions Basis set of splines 
Knot distributions Knot distributions 

S (A) (B) (C) (D) fE) (F) (G) (B) (GI 

U 0.0 
0.5 
0.75 
0.95 
0.98 

U 0.0 
0.5 
0.75 
0.95 
0.98 

Eigenvalues E ,  

€ 2  

6 3  

€4 

E S  

-10.71 
1 4 8  
5.57 
4.57 
3.35 

-8.64 
20.46 
23.64 
17.84 
13.87 
99.72 
04709 
0.8944 
2.9976 
6.3128 

10.6147 

-11.22 -11.27 - 
0.79 0.79 
5.59 5.60 
4.97 4.98 
3.74 3.75 i. 

-8.64 -8.64 
20.68 20.59 
24.07 24.04 
19.14 19.11 
15.04 15.07 
96.16 96.17 
0.0649 0.0649 
0.8666 0.8660 
2.9425 2.9367 
6.1947 6.1759 

10.4138 10.3707 

-11.23 
0.78 
5.59 
4.97 
3.75 

-8.64 
20.68 
24.08 
19'16 
15.07 
96.10 
0.0648 
0.8661 
2.9415 
6.1924 

10.4098 

-11.24 
0.78 
5.59 
4.98 
3-75 

-8.67 
20.62 
24.08 
19.16 
15.07 
96.10 

0.0648 
0.8661 
2.9414 
6.1923 

10.4102 

-11.24 
0.78 
5.59 
4.97 
3.75 

-8.67 
20.62 
24.08 
19.16 
15.07 
96.10 
0.0648 
0.8661 
2.9414 
6.1923 

10.4103 

-11.24 
0.78 
5.59 
4.98 
3.75 

-8.67 
20.62 
24.08 
19.16 
15.07 
96.10 
0.0648 
0.8661 
2.9414 
6.1923 

10.4102 

-11.23 -11.24 
0.78 0.78 
5.59 5.59 
540  4.98 
3.74 3.75 

-10.21 -10.21 
20.61 20.60 
24.16 24.16 
19.26 19.28 
14.98 15.01 
96.15 96.08 

Comparing eigenfunctions computed with the present distribution of N, with those given in 
Figure 4(b) it was evident that as N h  is reduced in magnitude the vertical gradient of the 
eigenfunction at the sea bed increases, and vertical resolution near the sea bed must also 
increase in order to resolve this region of rapid change. 

For comparison purposes currents computed using B -splines as basis functions in the 
solution of the hydrodynamic equations are given. It is evident that except for the V- 
component of surface current, no significant differences between currents computed using 
ten eigenfunctions determined numerically using an expansion of B -splines and those 
computed solving the hydrodynamic equations with the corresponding basis set of B -splines, 
were found. However the computer time used to solve the hydrodynamic equations, using 
eigenfunctions, including calculating the eigenfunctions was an order of magnitude less than 
that required using a basis set of B-splines based upon distribution (G). 

Calculation c (iii): Ns = 2600, N,,, = 650, Nh = 1 cm2/s 
To examine the effect upon the rate of convergence of the splines, of further reducing the 

value of eddy viscosity at the sea bed, the previous calculation was repeated but with 
N h  = 1 cm2/s. It is evident from Table IX that the B-spline expansion used to compute the 
eigenvalues and associated eigenfunctions converged significantly slower than in the previous 
example. Also the vertical gradient of the eigenfunction near the sea bed increased rapidly as 
Nh decreased, It is therefore necessary to increase the resolution near the sea bed as Nh 
decreases. If insufficient resolution is used, this region is not resolved correctly, and the 
computed eigenfunctions are not solutions of the eigenvalue problem with N ( z )  as specified, 
but are eigenfunctions of an eigenvalue problem involving a perturbed eddy viscosity &(z) 
which approximates the specified N ( z ) .  This can be demonstrated by comparing current 
profiles, free surface elevation 5, and eigenvalues computed in Table IX with distribution A 
(%=25), with those computed in Table VIII, with distrubutions (F) or (G) ( g = 3 7 )  (an 
accurate solution of the hydrodynamic equations with N, = 2600, N,,, = 650, N, = 5 cm2/s). It 
is evident from this comparison that current profiles, free surface elevation, and eigenfunc- 
tions computed for N = 2600, 650, 1, with &!I = 25 correspond with the accurate solution of 
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Table IX. u and v components of current, free surface elevation 6 and eigenvalues E ,  evaluated with 
N, = 0,2600 m2/s, N, = 0.0650 m2/s, Nh = 0.0001 m2/s using ten eigenfunctions computed using vari- 

ous knot distributions. For comparision currents computed using a basis set of B-splines are given 

Basis set of eigenfunctions Basis set of B-splines 
Knot distributions Knot distributions 

(A) (B) (0 (Dt 1E) (F) (G) (B) 

U 0.0 -11.08 -12’2.5 -12.30 -12.39 -12.45 -12.42 -12.46 -12.26 -12.46 
0.5 0.90 0.26 0.27 0.19 0.16 0.17 0.15 0.26 0.15 
0.75 5.61 5.67 5.69 5.68 5.68 5.68 5.68 5.67 5.68 
0.95 4.83 5.69 5.71 5.79 5.83 5.81 5.83 5.70 5.84 
0.98 3.68 467  4.68 4.80 4.85 4.81 4.84 4.68 4.86 

U 0.0 -8.60 -8.59 -8.58 -8.58 -8.61 -8.60 -8.61 -10’17 -10.16 
0.5 20.59 20.97 20.89 21.00 20.95 20.94 20.95 20.87 20.91 
0.75 23.97 24.87 24.84 24.96 25.01 24.98 25.01 24.94 25.08 
0.95 18.60 21.15 21.12 21.40 21.51 21.44 21.52 21.27 21.64 
0.98 14.93 17.75 17.76 18.10 18.25 18.16 18.26 17.76 18.27 

97.39 90.08 90.09 89.28 88.94 89.14 88.90 90-07 88.90 
Eigenvalues E ,  0.0665 04536 04536 0.0521 0.0515 0.0519 0.0515 - - 

E* 0.8743 0.8179 0.8173 0.8118 0.8093 0.8108 0.8090 - - 
~3 2.9583 2.8418 2.8364 2.8289 2.8235 2.8267 2.8229 - __ 
E& 6.2309 5.9741 5.9568 5.9453 5.9334 5.9405 5.9321 - - 
eS 10.4761 10.0478 10.0075 10.0014 9.9828 9.9941 9.9807 - - 

the hydrodynamic equations with N = 2600, 650, 5 .  This demonstrates that in the case in 
which M =  25, the eigenvalues and eigenfunctions are solution of a perturbed eigenvalue 
problem in which fi(z)=2600, 650, 5 and not the original distribution of 2600, 650, 1. To 
summarize, the effect of using an insufficient number of B-splines near the sea bed, means 
that the high shear in this region is not represented accurately and the vertical gradient of the 
computed eigenfunctions is underestimated at the sea bed. The physical implication of 
underestimating the vertical gradient at the sea bed is to artificially increase the value of 
eddy viscosity at the sea bed. The computed numerical solution therefore no longer 
corresponds to the true solution of the problem in which the eddy viscosity is given by N ( z ) ,  
but is a solution of the problem in which the vertical variation of N is given by &J(z). 

It is evident from Tables VIII and IX, that the artificial increase in eddy viscosity at the sea 
bed which arises when insufficient vertical resolution is used in the calculation, occurs when 
either a basis set of B-splines or eigenfunctions is used. By using a basis set of eigenfunc- 
tions, it is possible to check that there is sufficient vertical resolution by computing the 
eigenfunctions and eigenvalues with a range of increasing vertical resolutions, i.e. an 
increasing number of B-splines. Since this check on accuracy can be performed prior to the 
solution of the hydrodynamic equations, computer time is minimized. Having computed an 
accurate set of eigenfunctions, a basis set of ten functions appears adequate to solve the 
hydrodynamic equations. 

If the alternative approach of using the B-splines directly to solve the hydrodynamic 
equations is employed, then it is necessary to solve these equations for a range of vertical 
resolutions, if a check on the accuracy of the solution is to be made. Naturally this approach 
will involve a significant amount of computer time. Also, a basis set of the order of thirty to 
forty B-splines appears necessary when Nh has a low value compared with Ns and N,. 
Although when Nh is comparable with N,, a basis set of B-splines converges more rapidly 
than a basis set of eigenfunctions as demonstrated previously. 
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4. COMPARISION OF SEA SURFACE ELEVATIONS AND CURRENT PROFILES 
COMPUTED USING SLIP AND NO-SLIP BOTTOM BOUNDARY CONDITIONS 

It is evident from the previous series of calculations that the free surface elevation and the 
magnitude of the current computed using a no-slip boundary condition are critically 
dependent upon the value of eddy viscosity Nh and hence 2, at the sea bed. 

To examine the effect upon 5, u and u of changing the value of N h  wind induced motion in 
the rectangular basin, produced by a suddenly imposed wind stress of 15 dyneslcm, was 
again computed. In these calculations the B-spline distribution F (a= 37) (Table VII) was 
used to compute the eigenfunctions, and an expansion of ten of these functions was 
employed in the solution of the hydrodynamic equations. Eddy viscosity distribution B 
(Figure 3) was used with surface eddy viscosity N, fixed at 2600 cm2/s and N;, = 650 cm2/s. 
The thickness of the upper layer was dl = 11 m. 

In an initial series of calculations d, was fixed at 11 m, and N h  took a range of values, 
namely N,, = 1, 5 ,  10, 50 cm’ls. To test the effect of decreasing d2, a second series of 
calculations were performed with the same range of values of N h ,  but with d, = 7 m. In order 
to compare {, u and u computed using slip and no-slip bottom boundary conditions, the 
model was also run with the eddy viscosity distribution C (Figure 3) ,  N h  = N,, but with a slip 
bottom boundary condition. Referring to this figure, N, = 2600 cm2/s, N, = 650 cm2/s. 

bottom stress is 
computed using the quadratic law of friction (equation 7). In the present idealized model the 
tides are not included but their effect upon bottom friction can be introduced in the slip 
model by linearizing equation (7) to give equation (6). 

Linearizing bottom fricti~n,’*”~ the resulting coefficient k in equation (6) is given in terms 

In a physically realistic model, in which the tides are 

of K [equation (7)j by 
4KU k = -  

m 

where U is the amplitude of the tidal velocity. Typical values of K are of the order of 0.002 
to 0.005.11 Taking U to be between 50 cmls to 60 cmls, equation (46) gives a range of values 
of k from 0.127 cm/s to 0.382cmls. Linearizing bottom friction in the slip model is 
consistent with the use of a constant value of eddy viscosity based upon a mean tidal velocity 
in the no slip model, rather than the non-linear form given by equation (44). 

A series of calculations were performed with the slip model in which k =0*1 cm/s, 
0-2 cm/s, 0-4 emis, values covering the range of k from 0-127 cm/s to 0.382 cm/s, given by 
equation (46). 

Since the eddy viscosity in both the slip and no-slip models did not vary with x, y or t, then 
a(x ,  y, t )  = 1.0 in equations (31) and (36), with E, and f, calculated from (22), with 4 as given 
by distributions B and C (Figure 3). 

Sea surface elevations at position B, plotted as a function of time, for various values of Nh 
are given in Figure 5 .  In these calculations the thickness of the bottom boundary layer was 
fixed at d, = 11 rn. For comparison purposes elevations computed using a slip bottom 
boundary conditions with k = 0.1 cmls, 0.2 cm/s and 0.4 cmls are also shown. 

It is evident from this Figure that the damping of the sea surface elevation, following the 
imposition of the wind field, computed using a no-slip boundary condition, increases as N h  

increases. The phase of the peak of the maximum and minimum elevation is also affected, 
with the wavelength increasing as N h  increases. The magnitude of the mean value of 5 also 
rises as N,, is increased. The plot of sea surface elevation computed using a no-slip bottom 
boundary condition with N h  = 1 cmls, was not significantly different from that computed with 



54 A. M. DAVIES 

K E Y  - - - - -  Nh = 50 emz T' 
Nh = 10 cm2 s-1 
N h =  5 crn2ft 

- - -  N h =  I crnzs-' 

I50 #. x x k = 0 I c m h '  

_ _ _ - _ _  200 

k = 0 Pcms-'  

- g 100 
Y 

0 

50 

0 
0 10 20 30 40 50 60 70 80 90 

TIME (hrs) 

Figure 5. Time series of elevations [ at corner point B, computed using a no slip 
model with d, = 11 m (Figure 3, distribution B), and Nh = 50, 10, 5, 1 cm2/s and a slip 

model with k = 0.2, 0.1 cmis 

k = 0.1 cm/s. Similar agreement occurred in the case in which Nh = 50 cm2/s and k = 
0-4cmls. Evidently increasing the value of k has a similar effect upon 5 as increasing Nh. 

The effect of decreasing the thickness of the bottom boundary layer from 11 m to 7 m, is 
to increase the damping of the free surface elevation, compare Figure 6 with Figure 5.  It is 
evident from Figure 6 ,  that the time variation of the free surface elevation computed with 
Nh = 1 cm2/s and d2  = 7 m, closely resembles that computed using a slip condition with 
k =0*2 cm/s. Comparing in Figures 5 and 6 ,  the time variation of 5 computed with 
Nh = 1 cm2/s, it is apparent that reducing the thickness of the bottom boundary layer from 
11 m to 7 m, with Nh fixed at 1 cm2/s is to a first order, equivalent to increasing k from 

K E Y  - 
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Figure 6. Time series of elevations [ at corner point B, computed using a no slip 
model with d, = 7 m (Figure 3 distribution B), and Nh = 50, 10, 5, 1 cm2/s and a slip 

model with k = 0.2, 0.1 cm/s 
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0.1 cm/s to 0-2 cmls. This increased damping with decreasing thickness of the bottom 
boundary layer is to be expected, since for the vertical variation of eddy viscosity considered 
here (Distribution B in Figure 3)  its depth mean value will increase as d2  decreased, and 
hence the damping will increase. 

To investigate how sensitive the damping of the free surface elevation is to changes in the 
functional form of the eddy viscosity in the bottom boundary layer, a series of calculations 
were performed using the eddy viscosity distribution (D) (Figure 3) .  Referring to this figure, 
N, = 2600 cm2/s, N, = 650 cm2/s, Nk = 100 cm2/s and N h  was varied, covering a range of 
values, namely N h  = 1, 5, 10, 50 cm2/s. The various thicknesses were d, = 11 m, d2 = 11 m, 
d ;  = 5.5 m. Thus, surface and mid-depth values of eddy viscosity were as in the previous 
calculations, and the thickness of surface and bottom layers remained unchanged. However 
the eddy viscosity in the bottom layer, no longer varied in essentially a linear manner, but 
had a value of 100 cm2/s at a height of 5.5 m above the sea bed. 

The time variation of the sea surface elevation computed using this vertical variation of 
eddy viscosity is shown in Figure 7, for various values of N h .  Referring to this Figure, it is 
evident that as in the previous examples, the damping of the free surface elevation decreases 
as N h  decreases. Also for a given value of Nh, it can be readily seen comparing Figures 5-7, 
that the damping of &' computed using the vertical eddy viscosity distribution D (Figure 3) ,  is 
significantly less than that computed with distribution B (Figure 3) .  This is to be expected 
since the vertical mean viscosity in distribution D, is significantly less than that with 
distribution B, with corresponding values of N,, N, and N h .  

Current profiles, at position A, in the centre of the basin (Figure 1) at time t = 90 h (a time 
of near steady state) computed using a no-slip bottom boundary condition for the various 
eddy viscosity distributions B and D are shown in Figures 8-10. For comparision purposes, 
profiles calculated using a slip condition with the viscosity distribution C have also been 
plotted in these Figures. 

Referring to Figures 8-10 it is apparent that for each eddy viscosity distribution, used in 
the no-slip model, as Nh increases the current near the sea bed decreases, due to the 
increased damping in this region. An interesting point is that the surface current shows a 

Figure 7.  Time series of elevations 5 at corner point B, computed using a no slip 
model with d, = 11 m using eddy viscosity distribution (D) (see Figure 3) ,  and Nh = SO, 

10, 5 ,  1 cm2/s and a slip model with k = 0.2, 0.1 cm/s 



56 A. M. DAVIES 

U l C r n S  1 u lCmS- ' I  u 1Cms ') 
-15 10 - 5  0 5 10 -15 -10 - 5  0 5 10 

I T : }  : 1 : I -ti 

N, = I c m 2 i '  

(a 1 
N, = 5 c m 2 i '  N,= 1 0 c m ~ i '  N, = 50cm2<' 

KEY ( C )  __ __ (b) 
k = 0 I ems-' 

. . . . , . . . k * 0 Zcms-' 
- _ _ _ -  

( d )  

Figure 8. Current profiles at position A computed using viscosity distribution B (Figure 3) with d,= 11 m, 
N, = 2600 cmz/s, N,,, = 650 cm2/s and Nh = 1,S, 10, 50 cm2/s. For comparison purposes profiles computed with 

the slip model are also shown 
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Figure 9. Current profiles at position A computed using viscosity distribution B (Figure 3) with d, = 7 m, 
N, = 2600 cm2/s, N,,, = 650 cm2/s and Nh = 1,5,10, 50 cm2/s. For comparison purposes profiles computed with 

the slip model are also shown 
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Figure 10. Current profiles at position A computed using viscosity distribution D (Figure 3) with d, = 1 1 m, 
N, = 2600 cm2/s, N,,, = 650 c d / s  and Nh = 1,5, 10, 50 cm2/s. For comparison purposes profiles computed with 

the slip model are also shown 
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slight but definite increase as Nh increases, however the reason for this is not clear. 
Decreasing the thickness of the bottom boundary layer with Nh fixed (compare Figures 8 and 
9) slightly reduces currents near the sea bed. Changing the functional form of the eddy 
viscosity in such a manner that N is reduced in this region (Distribution D, Figure 3)  
produces a significant increase in bottom currents for a fixed Nh (compare Figures 8-10>. 

It is evident from these Figures that away from the sea bed, current profiles computed with 
a slip bottom boundary condition are not significantly different from those computed with 
some of the eddy viscosity distributions used here and a no-slip condition. 

For example in Figure 8(a), the current profile computed with Nh = 1 cm2/s, is comparable 
with that computed with k = 0-1 cm/s. With Nh = 10 cm2/s, the current profile resembles that 
computed with k = 0.2 cm/s (Figure 8c). This correspondence between solutions computed 
using slip and no-slip bottom boundary conditions is also evident in the time variation of t; 
(Figure 5) .  It is apparent from this figure that the curve computed with Nh = 1 cm2/s is 
identical to that computed with k = 0.1 cm/s and the solution with Nh = 10 cm2/s corresponds 
to that computed with k = 0.2 cmls. 

Current profiles computed with a bottom layer of thickness d2 = 7 m are plotted in Figure 
9. In this case, the profile computed with Nh = 1 cm2/s matches that computed with 
k = 0.2 cm/s. With a different functional form of viscosity near the sea bed, profiles 
computed with Nh = 50 cm2/s, correspond to k = 0-2  cm/s (Figure 10(d)). 

These calculations clearly demonstrate that away from the close proximity of the sea bed, 
current profiles computed using a slip bottom boundary condition are not significantly 
different from those computed using a no-slip boundary condition. 

In the case of a slip boundary condition with N, and N, constant there is only one free 
parameter k which determines the bottom stress. Increasing k produces more damping, 
whereas decreasing k reduces the damping. In the case of a no-slip bottom boundary 
condition again with N, and N, constant there are three factors which can produce a similar 
effect, namely the value of Z, and hence the magnitude of the viscosity at the sea bed, the 
thickness of the bottom boundary layer, and the functional form of the eddy viscosity in the 
bottom layer. 

Bowden, Fairbairn and Hughes” have suggested that in tidal flow the vertical variation of 
eddy viscosity can be approximated by a linear increase of N with height above the sea bed, 
through a bottom layer of thickness 0.14h. Above this layer N is constant up to the sea 
surface. In the present model, h = 65 m, therefore 0*14h = 9-1 m. Although flow in the 
model described here is wind induced, it does appear that a linear variation of viscosity in a 
bottom layer of the order of 9 m  thick is consistent with current profiles and damping 
produced using a slip condition with a physically realistic value of k between 0.1 cm/s to 
0=2cm/s, (see Figure 8(a), 8(c) and 9(a)). Depending upon whether the bottom boundary 
layer is 7 m or 11 m thick, current profiles computed with this range of k values correspond 
to those computed with a range of Nh from 1 cm2/s to 10 cm2/s. Assuming a typical tidal 
current amplitude in the North Sea of 60cm/s, using equation (45) (with ko=0.41, 
K = 0.005), these values of Nh correspond to roughness lengths 2, of between 0.57 cm 
(Nh = 1 cm2/s, current profiles comparable with k = 0.1 cm/s) and 5.7 cm (Nh = 10 cm2/s, 
current profiles comparable with k = 0-2 cm/s). Both these roughness lengths appear accepta- 
ble and lie within the range of 7.0 cm to 0.44 cm observed by Channon and Hami1t0n.l~ The 
value of 2, = 5.7 cm is consistent with the value of k = 0.2 cm/s used in linear numerical 
models.5321 

However, recent observations7 and theoretical work” have suggested that N may not vary 
in a linear manner but that its profile may show some curvature. Referring to Figure 10, 
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current profiles computed with viscosity distribution D which decreases rapidly near the sea 
bed (Figure 3) ,  with N, =SO cm2/s are not significantly different over the majority of the 
water column from those computed with k =O-2 cmls. This value of N,, implies that 
Z;, = 28.0 cm, a value higher than the range of values observed by Channon and Hami1t0n.l~ 

Comparing Figures 8(c) and 10(d), it is evident that current profiles computed with a linear 
variation of viscosity near the sea bed (Figure 8(c)) are not significantly different from those 
computed with a non-linear variation (Figure 10(d)). However in order to obtain similar 
current profies different values of Z, have had to be used, namely 2, = 5.7 cm (Figure 8(c)) 
and Z, = 28.0 cm (Figure 10(d)). 

This comparision illustrates the importance of knowing the exact variation of N in the 
bottom boundary layer, if the correct damping in the model is to be obtained without 
artificially having to increase Z,. Having to increase Z, to 28.0cm in order to obtain a 
physically realistic profile, suggest that N in this calculation, decreases too rapidly near the sea 
bed. However without more detailed information about how N should vary in the close 
proximity of the sea bed it is difficult to know precisely what variation should be used in a 
numerical model. 

Comparisons of computed current profiles and damping of sea surface elevations, com- 
puted employing a model using a linear slip condition with k = 0.2 cmls and a model with a 
no-slip condition, suggests that the two models are consistent when the thickness of the 
bottom boundary layer is of the order of 0.14h and Z, is of the order of 0.57 cm to 5.7 cm. 
This thickness of the bottom boundary layer and range of values of Z, are consistent with the 
vertical variation of N proposed by Bowden et al.” and values of Z, observed by Channon 
and Hamilton17 and Heathershaw.” 

The models used in these calculations are linear, however quadratic friction can be readily 
included using a slip condition at the sea bed,11*16 and an eddy viscosity which is a function of 
position and time can also be included by using equation (44) to determine how CY in 
equations (31) and (36) should vary with x, y and t .  

5.  CONCLUDING REMARKS 

The numerical calculations presented in this paper show that the Galerkin method with a 
basis set of eigenfunctions (a Galerkin-eigenfunction method) has certain advantages over the 
application of the Galerkin method with a basis set of arbitrarily chosen  function^.^.^ 

is 
that the functional form describing the vertical variation of eddy viscosity must be fixed. If 
this varies with time and horizontal space, then a new set of eigenfunctions must be 
computed at each time step and at each horizontal grid point in the model. Computationally 
this is not practical, and for the case in which the functional form of N in the vertical varies 
with time and space, the Galerkin method as formulated by D a v i e ~ , ~ . ~  in which the form of N 
is completely general, is preferable. 

However in many problems the vertical profile of eddy viscosity is fixed, although its 
magnitude varies with horizontal position and time.’ In these circumstances the Galerkin- 
eigenfunction method as formulated in this paper can be applied with advantage. 

Earlier eigenfunction methods536 determined the eigenfunctions analytically and were 
therefore restricted to idealized, simple vertical variations of viscosity. In the present method 
the eigenfunctions are determined numerically, therefore the complex vertical variations of 
viscosity which are found in nature7*’ can be included in the model. 

The importance of using a high vertical resolution near the sea bed, with a no-slip bottom 

The principal restriction on the present method, as with all eigenfunction 
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boundary condition has been demonstrated in this paper. If a coarse vertical resolution is 
used, this has the physical effect of artificially increasing the value of Nh, the eddy viscosity at 
the sea bed. As has been demonstrated in Section 3 ,  N,, is an important parameter which 
determines the damping of motion within the basin, and the magnitude of the free surface 
set-up in response to an applied wind stress. 

Consistent values of sea surface elevation and currents computed using slip and no-slip 
models were obtain with, in the slip model, a value of k = 0.2 cm/s a physically realistic value 
and a value of 2, between 0.57cm and 5*7cm, in the no-slip model. A bottom layer 
thickness of 7 m and 11 m was used in the no-slip model. These values of the bottom layer 
thickness agree with the value of 0.14h = 9.1 m (in this case) determined from observations 
by Bowden, Fairbairn and Hughes.20 The range of 2, values is in good agreement with 
observations made by Channon and Hamilton17 and Heathershaw.22 

The comparisons of current profiles computed using a slip and a no-slip model, with the 
above parameters, shows that away from the sea bed there are no significant differences in 
profiles computed with the two models. This confirms that currents away from the close 
proximity of the sea bed, computed using a slip bottom boundary condition, will not be 
significantly different from those computed with a no-slip boundary condition. By using a slip 
boundary condition, the problem of having to resolve the high shear layer near the sea bed 
does not occur. Also the difficulties of having to choose a value of Z,, also a value for the 
thickness of the bottom layer and the functional form of viscosity to use in this layer, are 
avoided. 

In practice values of 2, determined from observations can contain relatively large errors,23 
whereas values of C,,, [the coefficient of friction to use in a three dimensional model"] are 
relatively accurate. In relation to the relative merits of Z ,  and Cleo, BowdenZ3 stated, 'On the 
whole the drag coefficient Cleo appears to be a better parameter than 2, for relating the 
stress to the bottom roughness'. This statement appears to be as true in numerical modelling 
as in the physical world. The use of a slip bottom boundary condition, involving Cleo in a 
numerical model, certainly appears to have advantages over the use of a no-slip boundary 
and the associated problem of deciding upon a value of Z,, and how the viscosity should vary 
in the bottom boundary layer. 

Although the model described here is linear, the extension of the Galerkin-eigenfunction 
method to a fully non-linear model can be readily accomplished in an analogous manner to 
that given by D a ~ i e s . ~  In such a model, the value of the eddy viscosity would depend upon 
the magnitude of the currents hence it would vary with horizontal position and time. This 
variation would be incorporated in equations (31) and (36), by making cy in these equations 
proportional to the currents. 

Recently a model using a time and horizontally varying viscosity, with a slip bottom 
boundary condition, has been developed and successfully applied to the propagation of the 
M2 tide from the Atlantic Ocean on to the North West European shelf.16 The success of this 
model suggests that the use of an eddy viscosity which varies with horizontal position and 
time, but with a fixed vertical variation may be sufficient to accurately model the tides. 
Obviously, the Galerkin-eigenfunction method developed in this paper is ideal for the 
numerical solution of the hydrodynamic equations with this form of viscosity. 
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